

Transforming e-Business with Artificial Intelligence: Insights, Impacts, and Emerging Trends

Abdullahi Giza Abubakar

University of Lancashire, United Kingdom

ABSTRACT

Objective – The objective of the research is to synthesize technical insights from computer science with managerial perspectives from business and social studies, thereby offering a holistic lens for both scholars and practitioners.

Methodology – The study employs a systematic literature review of peer-reviewed articles, industry reports, and case studies published between 2015 and 2025, following PRISMA guidelines to ensure transparency and rigor.

Findings – Findings reveal that AI enhances operational efficiency, supports real-time decision-making, and strengthens customer engagement, but simultaneously raises challenges of latency in edge computing, ethical concerns in data use, and regulatory compliance across jurisdictions. The framework highlights feedback loops where successful adoption generates new data that further refines AI systems, while unresolved risks can hinder organizational performance.

Novelty – The study contributes an interdisciplinary model that clarifies AI's role in reshaping e-business and sets an agenda for future empirical validation.

Keywords: *internet of things, artificial intelligence, e-business model*

JEL Classification: O33, M15, L81

Article Info: Received 20 Oct 2025; Revised 11 Dec 2025; Accepted 18 Dec 2025

Article Correspondence: abdlgiza@yahoo.com

Recommended Citation: Abubakar, A. G. (2025). Transforming e-Business with Artificial Intelligence: Insights, Impacts, and Emerging Trends. *Journal of Business, Management, and Social Studies*, 5(3), 138-158.

I. INTRODUCTION

The rapid expansion of artificial intelligence (AI) technologies has created both opportunities and challenges for e-business organizations. Firms increasingly rely on AI to optimize logistics, personalise customer experiences, and enhance decision-making, yet many struggle with issues of scalability, data heterogeneity, and integration into existing business models. The central problem addressed in this study is the lack of a unified conceptual framework that connects technical AI capabilities with managerial and strategic outcomes. The objective is to develop a model that synthesises insights from computer science and management studies, thereby guiding both scholars and practitioners in understanding AI's role in e-business. The novelty of this research lies in bridging disciplinary boundaries: while prior studies have focused either on technical implementation (e.g., machine learning algorithms) or managerial adoption barriers, this paper integrates both perspectives to highlight interdisciplinary implications and practical relevance (McAfee & Brynjolfsson, 2017; Davenport & Ronanki, 2018).

A disruptive era in technology has begun with the introduction of AI technologies, Big Data, IoT, and Blockchain. Artificial intelligence is transforming businesses by empowering robots to make intelligent judgments through its learning capabilities. Big Data has become an indispensable tool for businesses, enabling them to extract meaningful insights from large datasets and facilitating well-informed decision-making. By enabling smooth communication and automation between connected objects, the Internet of Things (IoT) is transforming the way we interact with the outside world. At the same time, Blockchain technology is transforming transaction security and trust by providing decentralised, transparent systems that challenge conventional ideas of dependability. When taken as a whole, these developments represent a paradigm change in the way we think about technology, offering increased capabilities, efficiency, and creativity in a variety of fields (Areiqat et al., 2021).

The convergence of blockchain, IoT, Big Data, and AI technologies has had a significant impact on a number of fields, especially in e-businesses (Castillo & Taherdoost, 2023). AI enhances investment plans, Big Data examines market patterns, IoT streamlines transactions, and Blockchain guarantees safe and transparent financial transactions. AI-driven automation, Big Data analytics for preventive maintenance, IoT-enabled smart factories, and Blockchain for open supply chain management are some more ways that these technologies have revolutionised the manufacturing industry. Together, these technologies support increased capacities, efficiency, and creativity in a variety of businesses.

AI has revolutionised essential parts of operations and consumer relations, dramatically changing the face of e-businesses (Taherdoost, 2023; Castillo & Taherdoost, 2023). AI is used by e-businesses to give individualized client experiences. Chatbots and virtual assistants are utilised to improve communication and offer immediate assistance. These companies can now better understand customer behaviour. Thanks to AI-driven analytics, which opens the door to customised marketing campaigns and flexible pricing structures. It also improves backend operations efficiency, enhancing logistics, inventory control, and supply chain management. AI's predictive powers aid in better decision-making, which helps e-businesses remain flexible and adaptable in the quickly changing digital marketplace (Areiqat et al., 2021). All things considered, the incorporation of AI technology into e-businesses promotes innovation and competitiveness within the ever-changing online ecosystem, in addition to improving operational efficiency.

While existing literature extensively documents the benefits of AI in isolated business functions (e.g., marketing, logistics), a significant gap remains in synthesising how AI interacts with other foundational digital transformation technologies—specifically Industry 4.0 architectures and IoT systems to reshape entire e-business models. Furthermore, many studies lack a coherent conceptual model that links these constructs and their operational dynamics. This paper is necessary to bridge this gap by proposing an integrated framework and examining the ensuing computational and practical challenges, thus moving beyond descriptive summaries to a systemic analysis.

II. LITERATURE REVIEW

The Artificial Intelligence (AI)

Artificial Intelligence integration has become a transformational force in the ever-changing world of digital commerce, transforming how e-businesses run. AI features are used in a wide range of applications, from chatbots that provide smooth customer interactions using Natural Language Processing (NLP) to machine learning algorithms that provide tailored suggestions. AI-powered predictive analytics improves pricing tactics and streamlines supply chain management, highlighting a notable increase in operational efficiency.

Artificial Intelligence (AI) is the creation of computer programs or systems that can carry out tasks that normally call for human intelligence. These include handling hard issues, comprehending natural

language, identifying patterns, and learning from experience (Ali et al., 2023). AI seeks to build systems that, like human brains, are able to learn, adapt, and perform tasks without the need for explicit programming.

The business landscape is being drastically changed by AI, which is also radically changing how businesses function and make decisions (Alloui & Mourdi, 2023). Fundamentally, AI is the creation of intelligent machines that can think, learn, and solve problems to enhance human abilities. AI takes on diverse shapes in the business domain. For example, machine learning algorithms facilitate predictive analytics, while natural language processing improves consumer relations. Businesses may automate repetitive tasks, extract valuable insights from large datasets, and streamline operational procedures with the help of this game-changing technology. AI integration is becoming a strategic requirement for businesses looking to boost productivity, acquire a competitive advantage, and open up new creative opportunities (Alloui & Mourdi, 2023).

AI is having an impact on organizations in a variety of industries, including manufacturing, retail, healthcare, and finance. It helps with diagnosis and individualised treatment plans in healthcare and optimises investment strategies and automates risk management in finance. AI-driven automation boosts productivity in manufacturing, and it enables recommendation systems and improves the shopping experience for customers in retail (Dwivedi et al., 2021).


Yet, even with all of the benefits, firms still have to deal with issues like data protection and ethical concerns. A significant limitation is the possibility of making biased decisions (Ray, 2023). When AI systems use historical data to learn, they may reproduce or even amplify preexisting biases in the data. This raises ethical questions, especially in delicate situations like financing, hiring, or dealing with customers. A further drawback is that some AI systems lack transparency (Adadi & Berrada, 2018). A lot of sophisticated machine learning models function as “black boxes” (Rudin, 2019), which makes it difficult to understand how they arrive at particular conclusions. This lack of openness can impede understanding and trust, two important factors in business decision-making.

The Industry 4.0

The 4th industrial revolution, also known as industry 4.0, has come to automate traditional way of managing industries for optimum and efficient production. It is quite a revolutionary paradigm shift in industry and manufacturing. It includes the incorporation of digital technologies into many areas of industrial processes, resulting in “smart factories” that are automated, connected, and have data interchange capabilities. Industry 4.0 enables a more productive, adaptable, and intelligent manufacturing environment by utilizing technologies like the Internet of Things (IoT), artificial intelligence, big data analytics, and cyber-physical systems (Rojko, 2017). The Industry 4.0 and Internet of Things (IoT) are two different concepts having two distinct view in term of terminologies and uses. It sometimes been regarded as similar things but can be used interchangeably. The other view asserted that IoT is a resources of Industry 4.0, and as such it can be regarded to as an activator to the concept of the 4th Industry (Aheleroff et al., 2020).

Moreover, due to the industry’s extensive use of sensors and control systems, there is an enormous amount of data (Lee et al., 2015). It requires special care to manage such a large volume of data in an industry, also known as “big data” (Wang et al., 2022). Cloud storage services are designed to use for such purposes. The production line can operate well with the least amount of direct human involvement and with fewer errors in real-time interactions by accessing the data demanded and enabling self-decision-making algorithms for the machines using CPS applications. An integrated CPS system that uses smart manufacturing to automate will be more autonomous in its dynamic decision-making.

The German government was masterminded the idea of the Industry 4.0 in early of year 2011 (Rojko, 2017). That was the beginning of new generation for industries to enhance performance and productivity

with the trending technologies like Internet of Service (IoS), IoT, big data, RFID tags, and so on. The introduction of 'steam engine' is characterized as the 1st industrial revolution. (Kelly et al., 2023). The transition from traditional way of production to mass production caused some difficulties in the industries globally. The spreading of electricity uses in the industries, geared the 2nd industrial revolution (Coelho et al., 2023). However, the 3rd industrial revolution brought about advances of Information Technology (IT) and the prevalence of the electronics worldwide (Kelly et al., 2023). The 4th industry is all about the current technological transformation that changed the global supply chain for better productivity. Cyber Physical Systems (CPS) are now crucial groundwork in many different industry sectors that facilitate advancements in the widespread use of sensors, data acquisition systems, computer networks, and cloud computing.

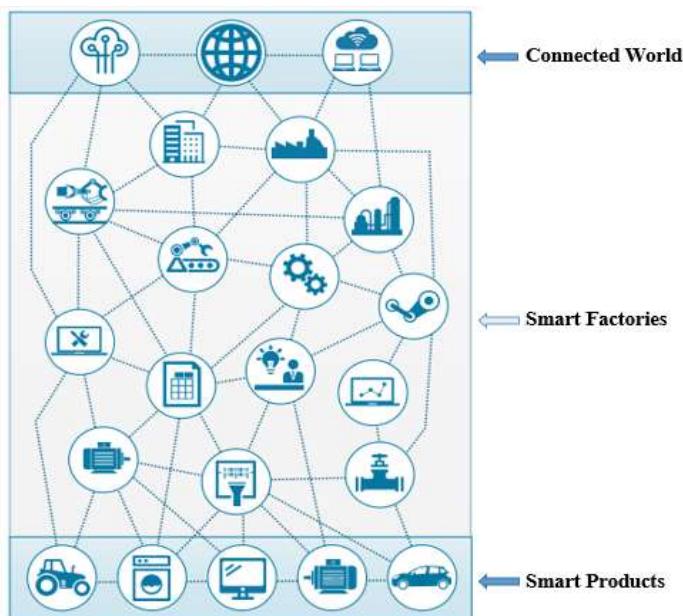


Figure 1 Diagrammatic Structure of Industry 4.0 (Schweichhart, 2016)

Businesses need specialised infrastructures that can introduce cutting-edge business models in order to put the technology of Industry 4.0 into operation. Automatic virtual metrology, which may accomplish the zero-defect aim in automation and expand to Industry 4.1 as the next step, would make the vision of Industry 4.0 expansion a reality (Caiazzo et al., 2023). Even though the concept of Industry 4.0 has been widely recognized but not fully adopted and implemented (Mourtzis, et al., 2022).

Architectural Model for Industry 4.0 (RAMI 4.0)

Industry 4.0 concepts are implemented using a comprehensive framework that describes the principles and structure of the Reference Architectural Model for Industrie 4.0 (RAMI 4.0). In the framework of the fourth Industrial Revolution, RAMI 4.0, developed in Germany, offers a standardised method for designing and integrating smart manufacturing platforms. The informational, functional, and communication aspects are the three primary dimensions covered by the paradigm.

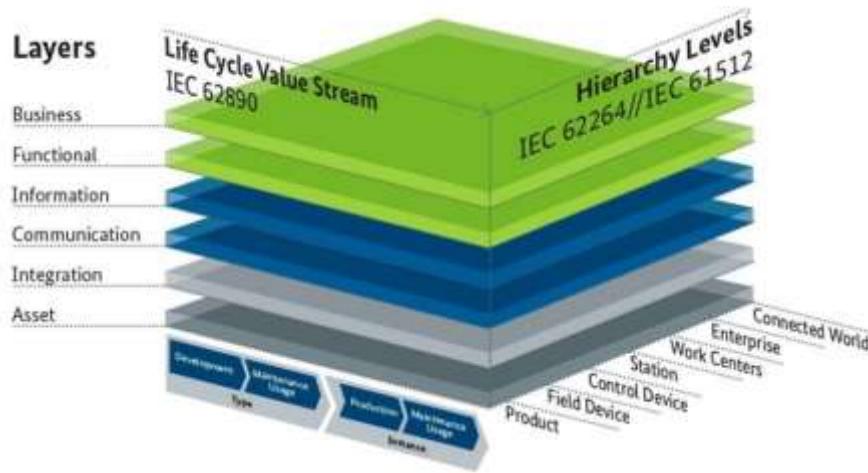


Figure 2 Architectural Model for Industry 4.0 (RAMI 4.0) adapted from Schweichhart (2016)

i. Informational Dimension: Industry 4.0's information models and data structures are the main subject of this dimension. Among its components is the Asset Administration Shell (AAS), a digital representation of real assets. AAS provides the identification, behaviour, and lifecycle of the asset and serves as the basis for smooth communication and interoperability amongst different components in the manufacturing environment.

ii. Functional Dimension: This dimension outlines the procedures and features that make up Industry 4.0. It consists of the Industry 4.0 parts, like sensors, actuators, and communication modules that are in charge of particular tasks. The functional layer of RAMI 4.0 enables a scalable and adaptable architecture, enabling the integration of various technologies and applications.

iii. Communication Dimension: RAMI 4.0 deals with the architecture of communication needed to ensure smooth component interaction. It makes use of standards and communication protocols to facilitate dependable data transmission. This component highlights the value of interoperability and open communication interfaces, which enable the integration of diverse systems and devices within the industrial ecosystem.

An organized and defined method for directing the creation and application of Industry 4.0 solutions is offered by RAMI 4.0. It encourages interoperability, scalability, and flexibility in smart manufacturing systems by creating a common language and design. The model is well known for providing a fundamental framework for businesses looking to digitally transform their industrial processes and adopt the ideas of the Fourth Industrial Revolution.

The Internet of Things (IoT)

The Internet of Things (IoT) refers to the interconnected network of physical devices embedded with sensors, software, and other technologies, enabling them to collect and exchange data over the internet. This concept extends beyond traditional computing devices, encompassing everyday objects, machines, and systems that communicate with each other to facilitate intelligent decision-making and automation. IoT is essential for establishing a smooth, networked environment that enhances functionality, ease, and efficiency in a variety of fields (Vermesan & Friess, 2022). The fundamental elements of the Internet of Things are at its core, with each one contributing uniquely to the development of connectivity, data processing, and functional efficacy. Sensors and actuators are key components of the Internet of Things

(IoT), serving as both data collectors and means of facilitating actions based on collected data. Together, these elements make up the IoT devices' sensory interface. The range of connectivity protocols, including Bluetooth, Wi-Fi, Zigbee, and cellular networks, which enable smooth communication between linked devices, further improves the system's efficiency, as depicted in Figure 3.

Figure 3 IoT Architecture

IoT platforms—platforms created especially for the administration and observation of devices—are essential to the Internet of Things architecture (Afzal et al., 2019). These platforms provide all-inclusive solutions that cover data analytics, device management, and security measures to guarantee the smooth functioning of the Internet of Things ecosystem. Strong security measures are also necessary to protect the integrity and privacy of transferred data. These methods include encryption, authentication, and access protocols.

Both edge computing and cloud-based platforms are crucial elements in the data processing domain that carry out the work of effective data analysis and storage (Gupta & Quamara, 2020). Well-designed User Interfaces (UI) and User Experiences (UX) enable easy control and seamless device interaction, hence facilitating user interaction within the IoT ecosystem. Specifically, power management tactics are essential for Internet of Things devices that run on restricted power supplies, highlighting the necessity of optimising energy use to increase the lifespan of devices. Together, these component parts comprise the complex framework of the Internet of Things, a paradigm-shifting technology impacting a wide range of industries and applications.

A Computational Model for IoT Operations

We examine the computational processes in the following mathematical model that determine the functionality of IoT in order to explain its operational dynamics. Every Internet of Things (IoT) device is equipped with distinct identities and necessary parts, including sensors for data collection and actuators for actuation, from the time of device activation. The next step is gathering information from the surroundings of the gadget in an organized manner and using communication protocols to send it over the internet. After being transferred, the data is carefully processed and evaluated on a centralised IoT platform, where algorithms that make decisions use the results to guide particular activities. Actuators then carry out these activities, eliciting reactions from the surrounding physical environment. Well-designed interfaces enable user interaction and provide intuitive control and monitoring. Data integrity must be protected at all times with the use of security methods like authentication and encryption. Device status is continuously monitored

to guarantee the IoT ecosystem runs smoothly. This completes the cycle of continuous data collection, analysis, and response.

To move beyond a descriptive stepwise account, we formalise the IoT operational cycle as a computational model. The core function of an IoT device $*i*$ can be represented as a continuous loop $f(I_i, S_i, E)$, where I_i is the device's internal state, S_i is sensor input, and E is the external environmental state. A single cycle can be decomposed as:

The operational cycle of an IoT device i is represented as a continuous computational loop:

$f(I_i, S_i, E)$,

where I_i denotes the internal state, S_i the sensor input, and E the environmental state.

Cycle Decomposition

1. Sensing & Data Acquisition

$$D_i(t) = S_i(E(t)) + \varepsilon.$$

2. Local Pre-processing (Edge)

$$P_i(t) = \varphi(D_i(t), I_i(t-1)).$$

3. Data Transmission

$Tx(P_i(t), \text{Protocol})$ with latency δ_t .

4. Centralised Processing & Decision

$$C(t + \delta_t) = \Psi \left(\sum_i P_i(t) \right)$$

5. Actuation

$$E(t + \delta_t + \delta_a) = A_i(C).$$

Algorithm 1 IoT Operational Loop

```

1: while system.active do
2:   for each device in IoT_network do
3:     raw_data  $\leftarrow$  device.sensor.read() // Step 1
4:     processed_data  $\leftarrow$  edge.filter(raw_data) // Step 2
5:     send_to_cloud(processed_data) // Step 3
6:   end for
7:   cloud_data  $\leftarrow$  aggregate_received_data()
8:   command_set  $\leftarrow$  ai_decision_engine(cloud_data) // Step 4
9:   for each command in command_set do
10:    target_device.actuator.execute(command) // Step 5
11:   end for
12:   wait(cycle_interval)

```

While full simulation results are beyond the scope of this conceptual paper, this model aligns with architectures validated in IoT literature (Gupta & Quamara, 2020). The key computational challenges inherent in this model, such as the latency ($\delta_t + \delta_a$) impacting loop efficiency and the scalability of the aggregation function Ψ , are discussed in the subsequent section.

The IoT operational cycle is articulated through a formal computational model implemented using structured mathematical expressions, pseudocode, and a TikZ-based schematic. The framework delineates the sequential processes of sensing, preprocessing, data transmission, cloud-level analytics, and environmental actuation through equations that mirror the logical flow of the device–cloud interaction loop.

The accompanying illustration translates this model into a coherent visual structure, presenting each functional stage as an interconnected block to depict the real-time movement of data from the edge layer to the cloud and back into the physical environment. Combined, these elements provide a rigorous and reproducible representation of the IoT feedback architecture, supporting methodological clarity and strengthening the system design exposition.

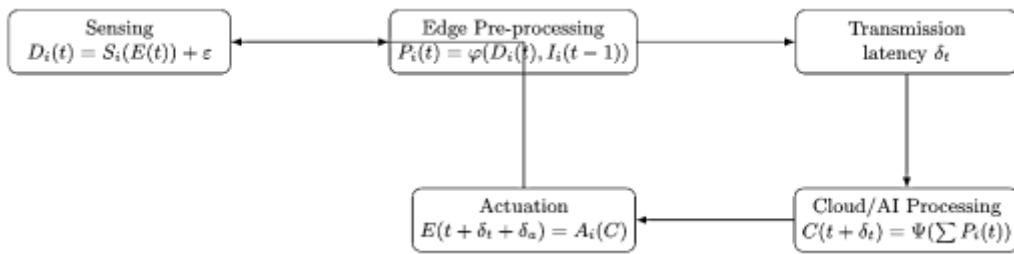


Figure 4 IoT Device Operational Cycle

The implementation integrates mathematical formalisation, to construct a unified representation of the IoT operational cycle. The expressions articulate the computational sequence underpinning sensing, local preprocessing, cloud-based decision-making, and actuation, while the pseudocode outlines the runtime logic of the system in an implementation-neutral form. The figure complements these components by offering a clear visual mapping of the data pathways and functional interactions across the device, edge, and cloud layers.

The algorithmic representation outlines the interconnected processes that define the functioning of the Internet of Things and captures the basic steps of its operation. The algorithm captures the complex interactions between elements that determine the operating environment of the Internet of Things, from data collection and transmission to centralised processing, decision-making, and actuation. This methodical approach guarantees the Internet of Things system's smooth operation and serves as the foundation for its flexibility and reactivity in a variety of applications, such as smart homes, industrial automation, and healthcare.

Electronic Business (e-Business)

The term “e-business,” which stands for “electronic business,” describes how commercial operations and transactions are carried out while employing digital and internet technology (Castillo & Taherdoost, 2023). In order to facilitate different elements of company operations, such as the purchasing and selling of goods and services, customer interactions, and internal processes, it entails the use of electronic means, such as websites, online platforms, and digital communication tools. E-business includes many other types of activities, such as digital marketing, electronic supply chain management, online shopping, and customer relationship management.

The idea behind e-business is using digital technologies to improve and optimise conventional company procedures. This covers electronic communication, digital marketing, online sales, and the incorporation of digital solutions into several areas of business operations. e-Business can be adopted in a variety of industries, including manufacturing, services, retail, and finance. It is not limited to any one industry. Beynon-Davies and Jones (2016) assert that two interrelated trends—a growing reliance on electronic networks and an enhanced centrality of information—have an impact on global markets. This means that businesses’ production, distribution, and consumption of their products are made simpler by

technological advancements brought about by increased access to information and communication technologies.


e-Business Models

e-Business models is an organizational strategic structure and methodology for conducting electronic business activities while utilizing digital technology and the internet (Castillo & Taherdoost, 2023). It includes the planning and organization of a company's online interactions, transactions, and processes in order to generate, provide, and capture value. The organization's digital interactions with clients, partners, and other stakeholders are outlined in the e-business model. It outlines the monetization strategies, distribution networks, and overarching plan for accomplishing corporate goals in the online sphere.

The use of digital technology, such as online marketing, data analytics, mobile applications, and e-commerce platforms, is essential to the e-business model (Castillo & Taherdoost, 2023). To effectively design the online experience, it is necessary to understand the digital behaviours, preferences, and expectations of the target audience. The nature of the business, the dynamics of the market, and the particular objectives of the organization all influence the e-business model, which is not a notion that works for all businesses.

Key components of an e-business model include the identification of customer segments, the establishment of online channels for product or service delivery, the development of effective customer relationships in the digital space, and the exploration of revenue streams, such as e-commerce transactions, subscription models, or advertising. The e-business model must also address considerations like data security, user privacy, and the integration of emerging technologies to stay competitive in the rapidly evolving digital landscape (Taherdoost, 2023). e-Business models, according to Dubosson-Torbay et al., (2022), are classified based on the nature and landscape of the business. Below are some of the common e-business models that AI will make a significant impact when fully integrated.

- i. e-Commerce Model: Enabling the online exchange of goods and services, the e-commerce model is a fundamental component of the digital economy embodying the online exchange of goods and services between businesses and consumers (B2C) or among businesses (B2B). Companies set up virtual shops, like Amazon, to facilitate international trade between customers and enterprises. This concept offers unmatched accessibility and ease, surpassing geographical limitations. It has revolutionised traditional retail by establishing vibrant online markets that reshape the nature of trade in the digital era.
- ii. Subscription Model: The core of the subscription business model is giving clients continuous access to a good or service in return for consistent, recurrent payments. This concept is best illustrated by platforms that provide consumers with ongoing and changing experiences, such as Netflix and Adobe Creative Cloud. Because of its adaptability across multiple industries, it offers businesses steady revenue streams and builds long-lasting connections with subscribers by continuously delivering value.
- iii. Advertising Model: Through the display of relevant adverts to users on digital platforms, the advertising model makes money. This strategy is used by content websites like BuzzFeed and social media behemoths like Facebook, which give consumers access to free material in return for relevant advertisements. This model highlights the mutually beneficial interaction between content providers, advertisers, and consumers by striking a balance between user experience and income production, thereby defining the economic dynamics of the digital world.
- iv. Affiliate Marketing Model: is a cooperative strategy that allows companies to use affiliates to market and sell their goods and services in exchange for commissions. Affiliates employ original links to increase traffic and purchases; they are frequently influencers or content

producers. This strategy, as shown by Amazon's Affiliate Program, encourages low-cost collaborations that let companies reach a wider audience while giving affiliates chances to make money from their online presence.

- v. Digital Products Model: This business strategy focuses on producing and marketing intangible products and services, such as online courses or e-books. The adaptability of this paradigm is demonstrated by digital product marketplaces such as Etsy or Udemy. Through leveraging the market for digital content, companies are able to overcome physical limitations and provide scalable and easily available products to a worldwide customer base.
- vi. P2P (peer-to-peer) Model: By encouraging direct interactions between people without the need for middlemen, the peer-to-peer model upends established industries. Through direct connections between consumers and service providers, platforms such as Airbnb and Uber promote resource efficiency and foster community building through cooperative consumption.
- vii. Marketplace Model: This model expands customer choice and promotes healthy competition by offering virtual venues for a number of vendors to display and provide goods and services. This paradigm is best shown by platforms such as eBay and Amazon Marketplace, which streamline transactions and give firms access to a large client base within a controlled environment.
- viii. Blockchain and Cryptocurrency Model: To enable safe and transparent transactions, the Blockchain and Cryptocurrency Model makes use of digital currencies and decentralised ledger technology. Blockchain-based platforms like Ethereum and cryptocurrency exchanges like Coinbase upend established financial institutions by bringing ideas like decentralization and trustless transactions, which spur innovation across a variety of industries.

Proposed Conceptual Framework: The AI-IoT-E-Business Synergy

Building on the individual constructs discussed, Figure 7 presents a conceptual model illustrating their synergistic interaction within modern e-business. The model posits that IoT infrastructure serves as the data-generation layer, collecting real-time operational and customer data. This data fuels AI algorithms, which form the analytical and decision-making core. AI outputs, such as predictive insights and automated decisions, directly optimise and innovate e-business models (e.g., dynamic pricing in E-commerce, predictive maintenance in service models). Concurrently, the principles and architectures of Industry 4.0, particularly cyber-physical systems and the RAMI 4.0 model, provide the standardised, interoperable environment that enables this seamless data flow and integration between the physical (IoT) and digital (AI, e-business platform) worlds. This framework demonstrates that value creation in contemporary e-business is not driven by any single technology in isolation, but by the recursive loop of data collection, intelligent analysis, and model adaptation.

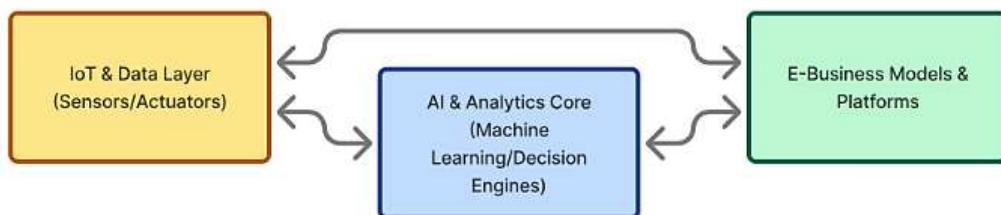


Figure 5 Conceptual Model of AI-IoT-Industry 4.0 Synergy in e-Business

III. METHODOLOGY

This study employs a systematic literature review to ensure rigour and transparency in synthesising existing knowledge. Peer-reviewed journal articles, industry reports, and case studies published between 2015 and 2025 were collected from databases such as Scopus, Web of Science, and IEEE Xplore. The review process followed PRISMA guidelines to ensure reproducibility and minimise bias (Page et al., 2021). Inclusion criteria required that sources explicitly discuss AI applications in e-business contexts, while exclusion criteria filtered out purely technical papers without managerial relevance. The analysis was organized around three dimensions: (1) AI applications in e-business, (2) benefits and risks across industries, and (3) emerging computational challenges such as latency and scalability. This methodological approach allows the paper to move beyond descriptive summaries toward a coherent conceptual framework that integrates technical and managerial insights.

IV. RESULTS AND DISCUSSION

AI and its Practical Implementations in Business Processes

AI has a longstanding history, and its widespread adoption was significantly catalysed with the public launch of ChatGPT in November 2022 (Montenegro-Rueda, 2023). Notably, ChatGPT became the fastest-growing app to exceed 100 million users in couple of weeks (Wu et al., 2023), marking a noteworthy milestone. Statistics support the use of AI; according to IBM, 35% of companies have already integrated AI into their operations. Surveys and analysis carried out globally support this trend (Webster 2023; Watts & Haan, 2023). The business world is especially excited about AI's ability to increase capacities and lower operating expenses. Netflix serves as an exemplary case in point, having purportedly saved \$1 billion by utilizing machine intelligence (Webster, 2023). Moreover, the ability of AI to increase operational efficiency by as much as 40% demonstrates the revolutionary effect it has on corporate performance.

Because the AI disruptive potential and ability to touch many aspects of business and human life, it is being embraced by a wide range of companies and sectors (Yin et al., 2021; Lee & Yoon 2021; Davenport & Ronanki, 2018; Galante et al., 2023; Javaid et al., 2023). The capacity of AI to automate activities, improve productivity, offer data-driven insights, and spark creativity across a range of industries is what is driving its adoption. Organizations hoping to prosper in the digital era are seeing the incorporation of AI technologies as a strategic need.

AI Adoption across Global Industries

While recent statistics suggest strong momentum in global AI adoption, they require careful interpretation. For instance, the reported 58% adoption rate in China is often linked to state-driven prioritization of AI development and distinct data governance norms, rather than purely superior technical integration (Recorded Future, 2025). In contrast, the finding that 43% of U.S. firms remain in an exploratory phase reflects a more compliance-driven and risk-averse approach to implementation, shaped by regulatory scrutiny and ethical debates (Schwaekha et al., 2025). Moreover, adoption metrics frequently obscure the depth of integration: a firm deploying a single AI chatbot is statistically counted the same as one embedding AI across enterprise-wide operations. Reported performance improvements, such as efficiency gains of up to 40%, typically represent best-case scenarios in large organizations with advanced infrastructure. These outcomes are not easily generalisable to small and medium-sized enterprises (SMEs), which often lack the necessary data ecosystems, computational resources, or specialised talent to replicate such results (Schwaekha et al., 2025; Peters et al., 2024). Consequently, while headline figures convey optimism, they

risk overstating the transformative impact of AI unless contextualised by sector, scale, and organizational readiness.

AI is transforming various sectors and is expected to develop at a rate of 37.3% each year between 2023 and 2030, according to Grand View Research (Isabella et al., 2023). This rapid growth highlights the growing impact that AI tools are expected to have in the years to come. With a significant 58% of businesses currently utilizing AI technologies and another 30% considering integration into their operational frameworks, China leads the world in AI adoption (Webster, 2023; Watts & Haan, 2023; Maghsoudi et al., 2023). The United States, on the other hand, has a much lower adoption rate of artificial intelligence (AI). Of the companies there, 25% have integrated AI into their operations, and a noteworthy 43% are still in the exploratory stage, evaluating the advantages and possible uses of integrating AI into their business processes (Webster, 2023; Watts & Haan, 2023; Dixon, 2023). This difference in adoption rates highlights how these two powerful countries approach and prioritise using AI differently.

Table 1 Comparative Analysis of AI Applications, Benefits, and Associated Risks Across Industries

Industry	Exemplary AI Application	Key Benefit	Primary Risk / Challenge
Retail/e-Commerce	Personalised recommendation engines	Increased conversion rates & average order value	Algorithmic bias leading to filter bubbles; privacy concerns in data collection (Gong et al, 2024)
Finance	AI-driven credit scoring & fraud detection	Improved risk assessment & operational security	“Black-box” decisions causing regulatory non-compliance; adversarial attacks on models (James et al., 2024)
Healthcare	Diagnostic imaging analysis	Enhanced diagnostic accuracy & speed	High accountability for errors; bias in training data exacerbating health disparities
Manufacturing/Supply Chain	Predictive maintenance & demand forecasting	Reduced downtime & optimised inventory	High initial integration cost with legacy systems; data silos inhibiting model accuracy
Customer Service	NLP-powered chatbots & sentiment analysis	24/7 service & improved customer insights	Loss of personal touch; miscommunication handling complex queries leading to frustration

How Businesses Utilizes AI Technologies?

Industries are using AI more and more as a critical tool to streamline and improve their operating procedures. Businesses are utilizing AI for a wide range of purposes, according to a Forbes Advisor poll (Watts & Haan, 2023). The renowned statistics firm, Forbes Advisor, made a compilation of global statistic on how AI is being utilised by businesses. The majority of responders cite customer service as a key point, with 56% using AI to improve customer support. Adopted by 51% of firms, cybersecurity and fraud management are other noteworthy areas of AI integration. In addition to these main uses, customer relationship management accounts for 46% of firms' AI deployments, where AI is widely employed. Digital personal assistants are also used in organizational activities; 47% of the organizations polled acknowledged this. Among the other notable uses of AI are product recommendations (33%), content creation (35%), and inventory management (40%). Additionally, companies are using AI for tasks like audience segmentation (24%), talent sourcing and recruitment (26%), accounting (30%), and supply chain operations (30%). The widespread use of AI across a variety of business disciplines is indicative of a strategic understanding of the technology's diverse range of applications and potential benefits for improving operations. Below is the graphical representation of the above analysis.

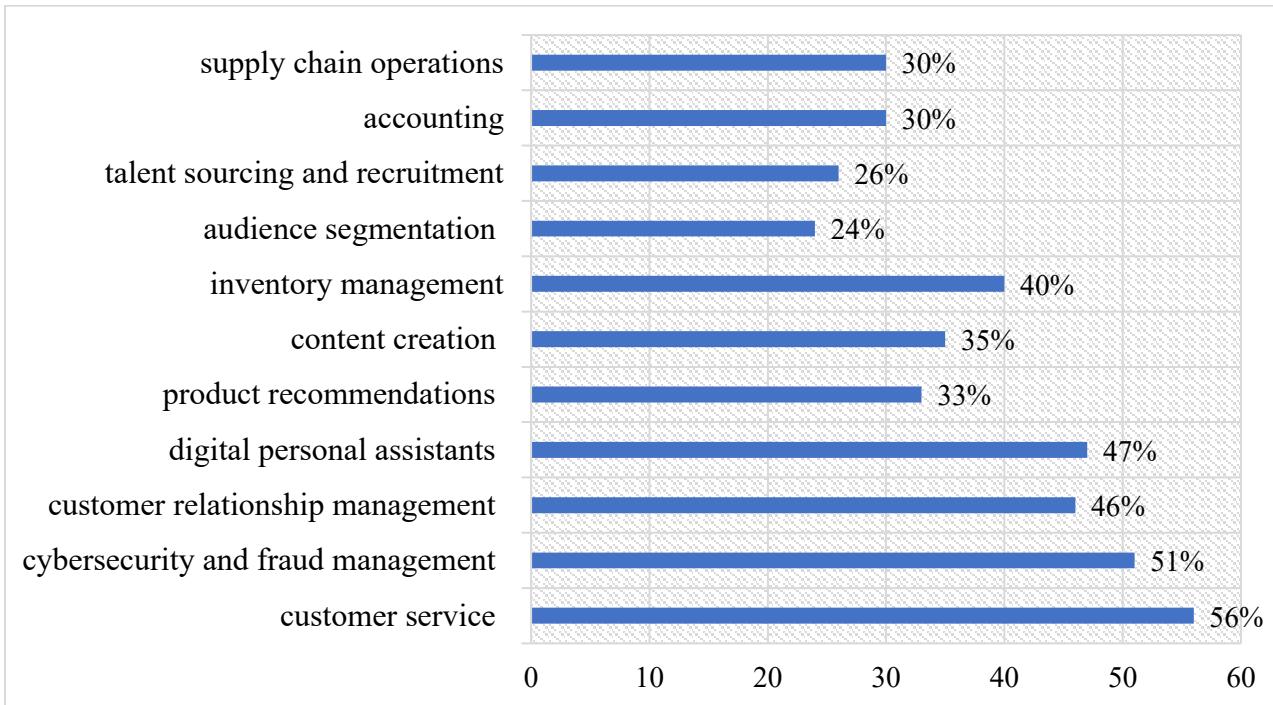


Figure 6 Businesses using Artificial Intelligence as of June 2023

Businesses using AI to Improve Clients' Experience

AI plays a pivotal role in augmenting customer experiences across various touchpoints. As indicated by the Forbes Advisor survey (Watts & Haan, 2023), a substantial 73% of businesses either utilise or intend to implement AI-powered chatbots for instantaneous messaging. Additionally, 61% of enterprises employ AI to enhance the optimisation of email communications, while 55% leverage AI for delivering personalised services, exemplified by product recommendations.

Furthermore, businesses are utilizing AI in the creation of extended written content, such as website copy (42%), and for tailoring advertising content to individual preferences (46%). AI has also made notable inroads into the handling of phone calls, with 36% of respondents indicating current or prospective use of AI in this domain. Additionally, 49% of businesses deploy AI for the optimisation of text messages (Watts & Haan, 2023). With the pervasive integration of AI across diverse customer interaction channels, there is a discernible enhancement in the efficiency and personalisation of the overall customer experience.

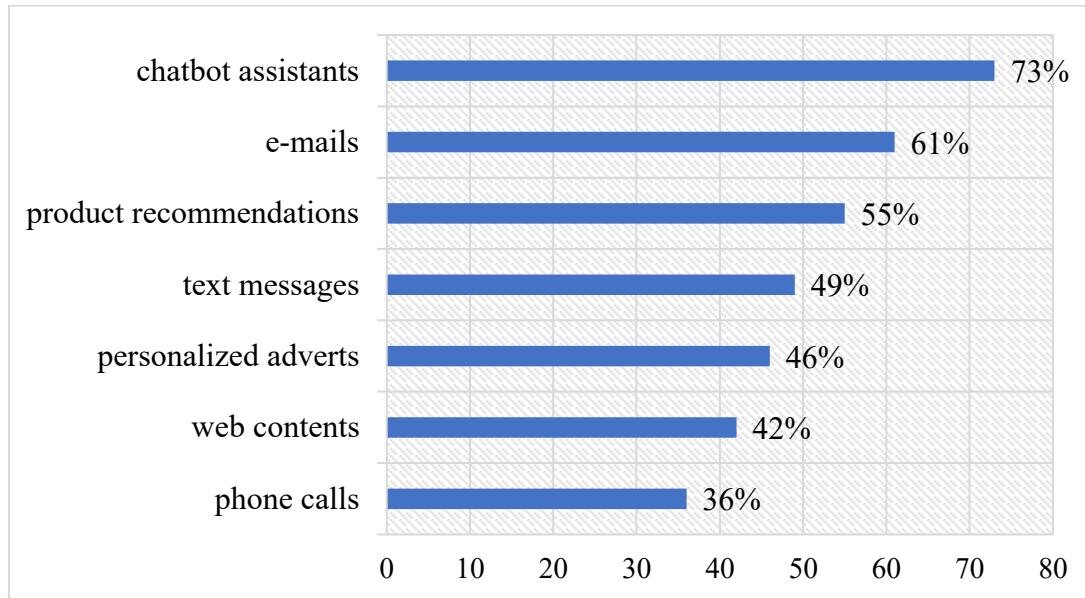


Figure 7 Businesses using AI to Improve Clients' Experience as of October 2023

The Future Trends of AI adoption in Businesses

As per the projections from Next Move Strategy Consulting, there is a strong potential for growth in the AI business over the next ten years. It is projected to grow dramatically; its present valuation of approximately 100 billion dollars is projected to climb twentyfold by 2030, to almost two trillion dollars (Thormundsson, 2023). The AI market's broad reach spans numerous industries, including supply chains, marketing, product manufacturing, research, analysis, and more. Artificial intelligence is expected to be incorporated into almost every industry's operating framework. The adoption of chatbots, AI that generates images, and the growth of mobile applications are some of the major themes propelling this evolution and will together shape the direction of AI advancements in the years to come.

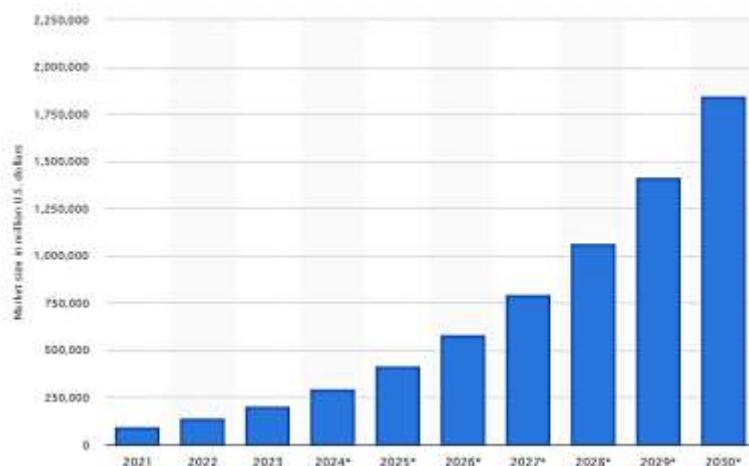
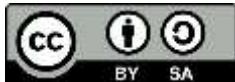



Figure 8 Global AI Market Size 2021-2030 (Thormundsson, 2023)

However, according to Grand View Research (Isabella et al., 2023), AI is transforming various sectors and is expected to develop at a rate of 37.3% or more each year between 2023 and 2030. This rapid growth highlights the growing impact that AI tools are expected to have in the years to come. It is anticipated that AI use would increase exponentially across a range of industries. Businesses are starting to realise how AI may improve productivity, efficiency, and decision-making. The growing number of businesses incorporating AI technologies into their operations is indicative of this (Smith, 2021). As AI technologies advance, the following are some important areas that should receive increased attention:

Future trends in AI adoption in business include more personalisation, an emphasis on ethical issues, broad integration, and advancements in technologies like edge AI. More advancements and breakthroughs in the AI space are anticipated as the technology expands quickly and companies continue to see the benefits of AI in streamlining operations and obtaining a competitive advantage.

V. CONCLUSION

Limitations

While there are many advantages to organizations implementing artificial intelligence (AI), there are drawbacks as well. Below is a thorough explanation of the general limitations on the use of AI in business processes:

Data Dependency and Bias: AI systems depend on vast amounts of high-quality data to function effectively. When training datasets are biased or incomplete, the resulting models can perpetuate discrimination in sensitive domains such as recruitment and hiring, thereby exposing organizations to reputational and legal risks (Raghavan et al., 2020). This underscores the need for rigorous data governance and bias-mitigation strategies.

Lack of Explainability: The prevalence of “black-box” models, particularly in deep learning, poses significant barriers to trust and regulatory compliance. Without transparent mechanisms to justify decisions such as loan approvals or denials, organizations risk both consumer backlash and regulatory sanctions (Rudin & Radin, 2019). Explainable AI (XAI) has therefore become a critical research and development priority.

Ethical Concerns and Societal Impact: AI technologies can amplify existing societal biases. For example, racially biased facial recognition systems have raised profound ethical dilemmas and sparked public debate about fairness and accountability in algorithmic decision-making (Schuetz, 2021).

High Initial Costs and Integration. The financial burden of acquiring advanced software and specialised talent remains a major barrier, particularly for small and medium-sized enterprises (SMEs). Moreover, integrating AI into legacy systems often disrupts established workflows and requires costly restructuring.

Security and Adversarial Risks: AI systems are vulnerable to adversarial attacks, where manipulated input data can corrupt outputs and undermine system reliability. Such vulnerabilities highlight the importance of robust cybersecurity frameworks (Radanliev & Santos, 2023).

Regulatory Compliance Complexity; Global businesses must navigate evolving and regionally diverse regulatory landscapes, such as the European Union’s General Data Protection Regulation (GDPR). Compliance requires continuous monitoring and adaptation, adding complexity to AI deployment strategies.

Overreliance and Autonomy: Excessive dependence on AI without adequate human oversight can lead to catastrophic failures in unpredictable scenarios. Maintaining a balance between automation and human judgment is therefore essential to safeguard organizational resilience.

Practical Implications and Strategic Recommendations

The findings of this study yield several important implications for diverse stakeholder groups engaged in the digital transformation of e-business.

For e-Business Managers: Managers should prioritize long-term investments in robust data infrastructure rather than adopting isolated AI tools that deliver only incremental benefits. A strong data foundation enables scalable applications such as AI-enhanced customer segmentation, predictive inventory management, and dynamic pricing strategies, each of which has demonstrated measurable returns on investment in recent studies (Davenport & Ronanki, 2018; Dwivedi et al., 2021). Beyond technical deployment, managers must also establish internal ethics committees or governance boards to monitor algorithmic bias, fairness, and compliance with emerging regulatory frameworks. Such structures not only mitigate reputational risks but also strengthen consumer trust in AI-enabled services.

For Developers and Technologists: Developers should design AI and IoT solutions with interoperability as a guiding principle, aligning with Industry 4.0 reference architectures such as RAMI 4.0 to ensure seamless integration into existing enterprise systems (Kagermann et al., 2016). Furthermore, the development of explainable AI (XAI) features is critical to enhance transparency and accountability, thereby fostering trust among users and regulators. By embedding interpretability into system design, technologists can reduce resistance to adoption and facilitate compliance with algorithmic transparency standards.

For Policymakers: Policymakers must craft agile regulatory frameworks that balance innovation with societal protection. This includes establishing enforceable standards for algorithmic transparency, fairness, and data portability, while simultaneously offering targeted support to small and medium-sized enterprises (SMEs). Incentives such as tax breaks, subsidized cloud infrastructure, and access to expertise networks can help SMEs overcome high entry barriers to AI adoption (OECD, 2023). Such measures ensure that the benefits of AI are distributed inclusively across the economy, rather than concentrated among large corporations.

Table 2 Summary of Key Concepts and Findings by Section

Section	Core Focus	Key Finding/Concept
2. Study Overview	Defining foundational constructs	AI, Industry 4.0 (via RAMI 4.0), and IoT are distinct but synergistic technologies. A formal computational model defines the IoT operational cycle.
2.5 Conceptual Framework	Model Development	Value in e-business is created through a synergistic loop: IoT data → AI analysis → optimised e-business models, enabled by Industry 4.0 standards.
3. AI Implementation	Adoption & Application	AI adoption is geographically uneven and depth varies. It is widely applied in customer service, cybersecurity, and operations, with tangible benefits but measurement challenges.
4. Limitations	Critical Barriers	Major hurdles are not just technical (data, explainability) but also economic (cost), ethical (bias), and regulatory.
5. Implications	Stakeholder Guidance	Success requires differentiated strategies for managers (invest in infrastructure), developers (build for interoperability/XAI), and policymakers (craft agile regulation).
6. Computational Challenges	Technical Depth	Scalability, data heterogeneity, and latency are fundamental computer science challenges that must be solved for robust, real-world AI-IoT integration.

Computational and Technical Challenges

The integration of AI within IoT-driven e-business faces non-trivial computational hurdles:

1. Scalability: The AI aggregation function Ψ must handle exponentially growing data from millions of IoT devices, requiring distributed computing architectures (e.g., federated learning) to avoid central server bottlenecks.
2. Data Heterogeneity: IoT sensors generate multimodal data (numerical, video, audio) at varying formats and frequencies. Developing AI models that can process and fuse this heterogeneous data for coherent decisions remains a key challenge.
3. Latency in Edge-Cloud Hybrids: For time-sensitive e-business applications (e.g., fraud detection, real-time inventory adjustment), the round-trip latency ($\delta_t + \delta_a$) of cloud-centric models is prohibitive. This necessitates edge AI, where models are deployed closer to devices, but introduces challenges in model updating and coordination.
4. Resource Constraints: IoT devices often have limited power, memory, and processing capability, constraining the complexity of onboard AI algorithms and necessitating efficient model compression techniques like quantization and pruning.

The COVID-19 pandemic has caused a substantial shift in consumer behaviour, requiring businesses all over the world to quickly adjust to the new reality of a greater reliance on online shopping. This change has been especially noticeable with the growth of e-commerce and internet platforms. The research discussed here adds to the current conversation by illuminating the pandemic's significant effects on patterns of production and consumption. Moreover, it emphasises the critical role that artificial intelligence (AI), industries 4.0, and the Internet of Things (IoT) play in coordinating innovative solutions to overcome the obstacles presented by the global health crisis.

The study emphasises how flexible Industry 4.0 and the Internet of Things are in reacting to the evolving business landscape. Notably, AI turns out to be a major enabler in this paradigm change, helping humans make important decisions on their own and giving them insightful information. The conversation also explores the idea of IoT operations, using an algorithmic model to explain the nuances of its capabilities. Understanding the dynamic interaction between IoT and AI inside current e-Business models requires a comprehensive understanding. The study expands its analysis to the global use of AI, offering insights into how businesses use AI to improve customer experiences and efficiency as they navigate this changing landscape.

This study demonstrates that AI is reshaping e-business models by enhancing efficiency, scalability, and customer engagement, while simultaneously introducing challenges related to data heterogeneity and computational complexity. By synthesising insights from computer science and management, the proposed conceptual framework offers guidance for managers, developers, and policymakers seeking to balance innovation with risk management. The findings underscore the importance of interdisciplinary approaches to AI adoption. Future research should empirically validate the framework and explore sector-specific adoption metrics to strengthen its practical utility.

REFERENCES

Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). *IEEE Access*, 6, 52138–52160.

Afzal, B., Umair, M., Shah, G. A., & Ahmed, E. (2019). Enabling IoT platforms for social IoT applications: Vision, feature mapping, and challenges. *Future Generation Computer Systems*, 92, 718–731. <https://doi.org/10.1016/j.future.2017.12.002>

Aheleroff, S., Xu, X., Lu, Y., Aristizabal, M., Velásquez, J. P., Joa, B., & Valencia, Y. (2020). IoT-enabled smart appliances under industry 4.0: A case study. *Advanced Engineering Informatics*, 43, 101043. <https://doi.org/10.1016/j.aei.2020.101043>

Ali, S., Abuhmed, T., El-Sappagh, S., Muhammad, K., Alonso-Moral, J. M., Confalonieri, R., ... & Herrera, F. (2023). Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence.

Allioui, H., & Mourdi, Y. (2023). Unleashing the potential of AI: Investigating cutting-edge technologies that are transforming businesses. *International Journal of Computer Engineering and Data Science (IJCEDS)*, 3(2), 1–12.

Areiqat, A. Y., Hamdan, A., Alheet, A. F., & Alareeni, B. (2021). Impact of artificial intelligence on E-commerce development. In *The Importance of New Technologies and Entrepreneurship in Business Development: In The Context of Economic Diversity in Developing Countries: The Impact of New Technologies and Entrepreneurship on Business Development* (pp. 571–578). Springer International Publishing. https://doi.org/10.1007/978-3-030-69221-6_43

Beynon-Davies, P., Jones, P., & White, G. R. (2016). Business patterns and strategic change. *Strategic Change*, 25(6), 675–691. <https://doi.org/10.1002/jsc.2101>

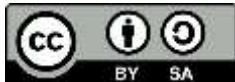
Ciaiazzo, B., Murino, T., Petrillo, A., Piccirillo, G., & Santini, S. (2023). An IoT-based and cloud-assisted AI-driven monitoring platform for smart manufacturing: design architecture and experimental validation. *Journal of Manufacturing Technology Management*, 34(4), 507–534. <https://doi.org/10.1108/JMTM-02-2022-0092>

Castillo, M. J., & Taherdoost, H. (2023). The Impact of AI Technologies on E-Business. *Encyclopedia*, 3(1), 107–121. <https://doi.org/10.3390/encyclopedia3010009>

Coelho, P., Bessa, C., Landeck, J., & Silva, C. (2023). Industry 5.0: The arising of a concept. *Procedia Computer Science*, 217, 1137–1144. <https://doi.org/10.1016/j.procs.2022.12.312>

Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. *Harvard Business Review*, 96(1), 108–116.

Dixon, R. B. L. (2023). A principled governance for emerging AI regimes: Lessons from China, the European Union, and the United States. *AI and Ethics*, 3(3), 793–810. <https://doi.org/10.1080/14494035.2021.1928377>


Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data—evolution, challenges and research agenda. *International Journal of Information Management*, 48, 63–71. <https://doi.org/10.1016/j.ijinfomgt.2019.01.021>

Dubosson-Torbay, M., Osterwalder, A., & Pigneur, Y. (2002). E-business model design, classification, and measurements. *Thunderbird International Business Review*, 44(1), 5–23.

Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... & Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. *International Journal of Information Management*, 57, 101994. <https://doi.org/10.1016/j.ijinfomgt.2019.08.002>

Galante, N., Cotroneo, R., Furci, D., Lodetti, G., & Casali, M. B. (2023). Applications of artificial intelligence in forensic sciences: Current potential benefits, limitations and perspectives. *International Journal of Legal Medicine*, 137(2), 445–458. <https://doi.org/10.1007/s00414-022-02928-5>

Gong, Y., Schroeder, A., Pan, B., Sundar, S. S., & Mowen, A. J. (2024). Does algorithmic filtering lead to filter bubbles in online tourist information searches? *Information Technology & Tourism*, 26(1), 183–217.

Gupta, B. B., & Quamara, M. (2020). An overview of Internet of Things (IoT): Architectural aspects, challenges, and protocols. *Concurrency and Computation: Practice and Experience*, 32(21), e4946. <https://doi.org/10.1002/cpe.4946>

Isabella, G., Almeida, M. I. S. D., & Mazzon, J. A. (2023). One-way road: The impact of artificial intelligence on the development of knowledge in management. *RAUSP Management Journal*, 58, 249–255. <https://doi.org/10.1108/RAUSP-07-2023-273>.

James, U. U., Idika, C. N., Enyejo, L. A., Abiodun, K., & Enyejo, J. O. (2024). Adversarial Attack Detection Using Explainable AI and Generative Models in Real-Time Financial Fraud Monitoring Systems. *International Journal of Scientific Research and Modern Technology*, 3(12), 142–157.

Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023). Understanding the potential applications of Artificial Intelligence in Agriculture Sector. *Advanced Agrochem*, 2(1), 15–30. <https://doi.org/10.1016/j.aac.2022.10.001>

Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; Final report of the Industrie 4.0 Working Group. *Forschungsunion*.

Kelly, M., Mokyr, J., & Ó Gráda, C. (2023). The mechanics of the Industrial Revolution. *Journal of Political Economy*, 131(1), 59–94. <https://doi.org/10.1086/720890>

Lee, D., & Yoon, S. N. (2021). Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges. *International Journal of Environmental Research and Public Health*, 18(1), 271. <https://doi.org/10.3390/ijerph18010271>

Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. *Manufacturing Letters*, 3, 18–23.

Lee, J., Suh, T., Roy, D., & Baucus, M. (2019). Emerging technology and business model innovation: The case of artificial intelligence. *Journal of Open Innovation: Technology, Market, and Complexity*, 5(3), 44. <https://doi.org/10.3390/joitmc5030044>

Lloyd, K. (2018). Bias amplification in artificial intelligence systems. *arXiv preprint arXiv:1809.07842*. <https://doi.org/10.48550/arXiv.1809.07842>

Maghsoudi, M., Shokouhyar, S., Ataei, A., Ahmadi, S., & Shokouhyar, S. (2023). Co-authorship network analysis of AI applications in sustainable supply chains: Key players and themes. *Journal of Cleaner Production*, 422, 138472. <https://doi.org/10.1016/j.jclepro.2023.138472>

McAfee, A., & Brynjolfsson, E. (2017). Machine, platform, crowd: Harnessing our digital future. *WW Norton & Company*.

Montenegro-Rueda, M., Fernández-Cerero, J., Fernández-Batanero, J. M., & López-Meneses, E. (2023). Impact of the implementation of ChatGPT in education: A systematic review. *Computers*, 12(8), 153. <https://doi.org/10.3390/computers12080153>

Mourtzis, D., Angelopoulos, J., & Panopoulos, N. (2022). A Literature Review of the Challenges and Opportunities of the Transition from Industry 4.0 to Society 5.0. *Energies*, 15(17), 6276. <https://doi.org/10.3390/en15176276>

OECD (2025). The Adoption of Artificial Intelligence in Firms. New Evidence for Policymaking. https://www.oecd.org/en/publications/the-adoption-of-artificial-intelligence-in-firms_f9ef33c3-en.html

Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. *thebmj*, 372, n160. <https://doi.org/10.1136/bmj.n160>

Radanliev, P., & Santos, O. (2023). Adversarial Attacks Can Deceive AI Systems, Leading to Misclassification or Incorrect Decisions. <https://doi.org/10.20944/preprints202309.2064.v1>

Raghavan, M., Barocas, S., Kleinberg, J., & Levy, K. (2020, January). Mitigating bias in algorithmic hiring: Evaluating claims and practices. In Proceedings of the 2020 conference on fairness, accountability, and transparency (pp. 469–481). <https://doi.org/10.1145/3351095.3372828>

Ray, P. P. (2023). ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. *Internet of Things and Cyber-Physical Systems*. <https://doi.org/10.1016/j.iotcps.2023.04.003>

Recorded Future (2025). Measuring the U.S.–China AI gap: Model performance, investment, and regulation. <https://www.recordedfuture.com/research/measuring-the-us-china-ai-gap>

Rojko, A. (2017). Industry 4.0 concept: Background and overview. *International Journal of Interactive Mobile Technologies*, 11(5).

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. *Nature Machine Intelligence*, 1(5), 206–215. <https://doi.org/10.1038/s42256-019-0048-x>

Rudin, C., & Radin, J. (2019). Why are we using black box models in AI when we don't need to? A lesson from an explainable AI competition. *Harvard Data Science Review*, 1(2), 1–9. [10.1162/99608f92.5a8a3a3d](https://doi.org/10.1162/99608f92.5a8a3a3d)

Sánchez, E., Calderón, R., & Herrera, F. (2025). Artificial Intelligence Adoption in SMEs: Survey Based on TOE–DOI Framework, Primary Methodology and Challenges. *Applied Sciences*, 15(12), 6465. <https://doi.org/10.3390/app15126465>

Schuetz, P. N. (2021). Fly in the Face of Bias: Algorithmic Bias in Law Enforcement's Facial Recognition Technology and the Need for an Adaptive Legal Framework. *Minnesota Journal of Law & Inequality*, 39, 221. <https://heinonline.org/HOL/LandingPage?handle=hein.journals/10.1162/99608f92.5a8a3a3d>

Schwaake, J., Peters, A., Kanbach, D. K., Kraus, S., & Jones, P. (2025). The new normal: The status quo of AI adoption in SMEs. *Journal of small business management*, 63(3), 1297-1331. <https://doi.org/10.1080/00472778.2024.2379999>

Schweichhart, K. (2016). Reference architectural model industrie 4.0 (rami 4.0). An Introduction, 40. <https://img5.custompublish.com/getfile.php/3901260.2265.akzillql7uuiipz/RAMEI+4.0.pdf?return=www.amnytt.no>

Seizov, O., & Wulf, A. J. (2020). Artificial Intelligence and Transparency: A Blueprint for Improving the Regulation of AI Applications in the EU. *European Business Law Review*, 31(4). <https://doi.org/10.54648/eulr2020024>

Shively, R. J., Lachter, J., Brandt, S. L., Matessa, M., Battiste, V., & Johnson, W. W. (2018). Why human-autonomy teaming? In *Advances in Neuroergonomics and Cognitive Engineering: Proceedings of the AHFE 2017 International Conference on Neuroergonomics and Cognitive Engineering, July 17–21, 2017, The Westin Bonaventure Hotel, Los Angeles, California, USA* 8 (pp. 3–11). Springer International Publishing. https://doi.org/10.1007/978-3-319-60642-2_1

Smith, B. (2021). AI Adoption Trends 2021: Key Insights from the State of AI Report. *Forbes*. <https://www.forbes.com/sites/forbesbusinesscouncil/2021/07/21/ai-adoption-trends-2021-key-insights-from-the-state-of-ai-report/>

Taherdoost, H. (2023). E-Business Models and Strategies. In *E-Business Essentials: Building a Successful Online Enterprise* (pp. 25–50). Cham: Springer Nature Switzerland.

Thormundsson B., (2023). Artificial Intelligence (AI) market size worldwide in 2021 with a forecast until 2030. Statista. <https://www.statista.com/statistics/1365145/artificial-intelligence-market-size/>

Van Noorden, R. (2020). The ethical questions that haunt facial-recognition research. *Nature*, 587(7834), 354–359.

Vermesan, O., & Friess, P. (Eds.). (2022). *Digitising the Industry Internet of Things Connecting the Physical, Digital and VirtualWorlds*. CRC Press.

Wang, J., Xu, C., Zhang, J., & Zhong, R. (2022). Big data analytics for intelligent manufacturing systems: A review. *Journal of Manufacturing Systems*, 62, 738–752.

Watts, R. & Haan, K. (2023). How Businesses Are Using Artificial Intelligence in 2023. <https://www.forbes.com/advisor/business/software/ai-in-business/>

Webster, M., (2023). 149 AI Statistics: The Present and Future of AI at Your Fingertips. <https://www.authorityhacker.com/aistatistics/#:~:text=AI%20service%20revenue%20will%20increas,e,CAGR%20of%2042.2%25%20from%202018>

Wu, T., He, S., Liu, J., Sun, S., Liu, K., Han, Q. L., & Tang, Y. (2023). A brief overview of ChatGPT: The history, status quo and potential future development. *IEEE/CAA Journal of Automatica Sinica*, 10(5), 1122–1136. 10.1109/JAS.2023.123618

Yin, J., Ngiam, K. Y., & Teo, H. H. (2021). Role of artificial intelligence applications in real-life clinical practice: Systematic review. *Journal of Medical Internet Research*, 23(4), e25759. doi:10.2196/25759